High-dimensional imaging using combinatorial channel multiplexing and deep learning – Nature Biotechnology

Rodriguez-Canales, J., Eberle, F. C., Jaffe, E. S. & Emmert-Buck, M. R. Why is it crucial to reintegrate pathology into cancer research? Bioessays 33, 490–498 (2011).
Google Scholar
Odell, I. D. & Cook, D. Immunofluorescence techniques. J Invest. Dermatol. 133, e4 (2013).
Google Scholar
Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).
Google Scholar
Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl Acad. Sci. USA 110, 11982–11987 (2013).
Google Scholar
Radtke, A. J. et al. IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues. Proc. Natl Acad. Sci. USA 117, 33455–33465 (2020).
Google Scholar
Schubert, W. et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat. Biotechnol. 24, 1270–1278 (2006).
Google Scholar
Lin, J. R. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).
Google Scholar
Kinkhabwala, A. et al. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci. Rep. 12, 1–16 (2022).
Google Scholar
Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).
Google Scholar
Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).
Google Scholar
Wang, Y. et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 17, 6131–6139 (2017).
Google Scholar
Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).
Google Scholar
Lin, R. et al. A hybridization-chain-reaction-based method for amplifying immunosignals. Nat. Methods 15, 275–278 (2018).
Google Scholar
Stack, E. C., Wang, C., Roman, K. A. & Hoyt, C. C. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 70, 46–58 (2014).
Google Scholar
Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).
Google Scholar
Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).
Google Scholar
de Souza, N., Zhao, S. & Bodenmiller, B.Multiplex protein imaging in tumour biology. Nat. Rev. Cancer 24, 171–191 (2024).
Google Scholar
Zidane, M. et al. A review on deep learning applications in highly multiplexed tissue imaging data analysis. Front. Bioinform. 3, 1159381 (2023).
Google Scholar
Elhanani, O., Ben-Uri, R. & Keren, L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell 41, 404–420 (2023).
Google Scholar
Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. Nat. Rev. Genet. 23, 741–759 (2022).
Google Scholar
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
Google Scholar
Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).
Google Scholar
Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753 (2010).
Google Scholar
Campagne, F., Dorff, K. C., Chambwe, N., Robinson, J. T. & Mesirov, J. P. Compression of structured high-throughput sequencing data. PLoS ONE 8, 79871 (2013).
Google Scholar
Cleary, B., Cong, L., Cheung, A., Lander, E. S. & Regev, A. Efficient generation of transcriptomic profiles by random composite measurements. Cell 171, 1424–1436 (2017).
Google Scholar
Cleary, B. et al. Compressed sensing for highly efficient imaging transcriptomics. Nat. Biotechnol. 39, 936–942 (2021).
Google Scholar
Sachs, K. et al. Compressed sensing for simultaneous measurement of multiple different biological molecule types in a sample. JUSTIA Patent 10832795 (2013).
Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359 (2020).
Google Scholar
Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387 (2018).
Google Scholar
Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).
Google Scholar
Bai, Y. et al. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. Nat. Commun. 14, 1–18 (2023).
Google Scholar
HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187 (2019).
Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).
Google Scholar
Thul, P. J. & Lindskog, C. The Human Protein Atlas: a spatial map of the human proteome. Protein Sci. 27, 233 (2018).
Google Scholar
Huang, H. et al. UNet 3+: a full-scale connected UNet for medical image segmentation. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (eds Rupp, M., Jutten, C. & Fung, P.) (IEEE, 2020).
Sommer, C., Straehle, C., Kothe, U. & Hamprecht, F. A. Ilastik: interactive learning and segmentation toolkit. In Proceedings of the 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (eds Wright, S., Pan, X. & Liebling, M.) (IEEE, 2011).
Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).
Google Scholar
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 1–7 (2017).
Google Scholar
Elhanani, O., Keren, L. & Angelo, M. High-dimensional tissue profiling by multiplexed ion beam imaging. Methods Mol. Biol. 2386, 147–156 (2022).
Google Scholar
Baranski, A. et al. MAUI (MBI Analysis User Interface)—an image processing pipeline for multiplexed mass based imaging. PLoS Comput. Biol. 17, e1008887 (2021).
Google Scholar
Xi, Y. et al. Adaptive-weighted high order TV algorithm for sparse-view CT reconstruction. Med. Phys. 50, 5568–5584 (2023).
Google Scholar
Shen, G., Dwivedi, K., Majima, K., Horikawa, T. & Kamitani, Y. End-to-end deep image reconstruction from human brain activity. Front. Comput. Neurosci. 13, 432276 (2019).
Google Scholar
Shen, G., Horikawa, T., Majima, K. & Kamitani, Y. Deep image reconstruction from human brain activity. PLoS Comput. Biol. 15, e1006633 (2019).
Google Scholar
Takagi, Y. & Nishimoto, S. High-resolution image reconstruction with latent diffusion models from human brain activity. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Brown, M. S., Li, F.-F., Mori, G. & Sato, Y.) (IEEE, 2023).
Wiedenmann, J., Oswald, F. & Nienhaus, G. U. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61, 1029–1042 (2009).
Google Scholar
Wang, J., Zheng, N., Chen, B. & Principe, J. C. Associations among image assessments as cost functions in linear decomposition: MSE, SSIM, and correlation coefficient. Neurocomputing 422, 139–149 (2021).